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Faced with the determination of many completely sequenced genomes, computational biology is now faced with
the challenge of interpreting the significance of these data sets. A multiplicity of data-related problems impedes
this goal: Biological annotations associated with raw data are often not normalized, and the data themselves are
often poorly interrelated and their interpretation unclear. All of these problems make interpretation of genomic
databases increasingly difficult. With the current explosion of sequences now available from the human genome
as well as from model organisms, the importance of sorting this vast amount of conceptually unstructured
source data into a limited universe of genes, proteins, functions, structures, and pathways has become a
bottleneck for the field. To address this problem, we have developed a method of interrelating data sources by
applying a novel method of associating biological objects to ontologies. We have developed an intelligent
knowledge-based algorithm, DIAN, to support biological knowledge mapping, and, in particular, to facilitate the
interpretation of genomic data. In this respect, the method makes it possible to inventory genomes by collapsing
multiple types of annotations and normalizing them to various ontologies. By relying on a conceptual view of
the genome, researchers can now easily navigate the human genome in a biologically intuitive, scientifically
accurate manner.

Biologists have never before been exposed to such vast
amounts of sequence data as that from the human genome
and a variety of model organisms. This development now
raises the issue of how to interpret the meaning of the ge-
nome on the basis of prior biological understandings. Anno-
tation tasks, such as the prediction of protein function and
structure, are essential to this process and are by no means
completely robust. Furthermore, the integration of historical
domain knowledge accumulated in individual research fields
with these sequence and structural annotations is becoming
increasingly complex and difficult. The size, diversity, and
complexity of the data, which include biological sequence
information itself, third party or in-house annotation, and
information from the scientific literature, are responsible for
these difficulties. Another reason relates to the lack of data
and information normalization, because the data repositories
are often poorly designed, particularly in the case of older
repositories. Furthermore, data processing procedures vary
substantially, and the underlying semantic and data models
are moving targets. Finally, there is the extreme specialization
of research fields.

Despite these problems, model organism studies and as-
sociated DNA and protein sequence data sets have revealed a
high degree of sequence and functional conservation between
organisms (Chervitz et al. 1999). Similarly, the accumulated
protein structure data have shown that the number of protein
folds is probably limited (Bowie et al. 1991). The limited num-
ber of biological roles, protein functions, and structural types

enable a common language for annotation, which is begin-
ning to be implemented by biocomputational ontology engi-
neering (Riley 1993; Baker et al. 1999; Ashburner et al. 2000;
Karp 2000). Ontologies provide an ideal mechanism of orga-
nization of biological data at the conceptual level by provid-
ing a framework for data whose properties are otherwise non-
normalized. “Normalization” is used here to refer to a state in
which several types of signifiers ultimately express the same
concept, and in which a concept is defined as a generic ab-
straction derived from instances. An example of a concept is
the notion of “cell adhesion molecules”, to which specific
types (instances) of proteins such as cadherins, neural cell
adhesion molecules, and integrins are conceptually associ-
ated. The proper assignment of DNA and protein sequences to
ontologies therefore leverages the rigor of the underlying con-
cepts networked within these ontologies, and enables com-
putations that would otherwise be unreliable due to the vari-
ability of terms used to described biological data in most of
the biocomputational databases. For example, ontology-
based querying can enable the retrieval of DNA and protein
sequences based on biological concepts rather than relying on
keyword or synonym searches, which are inherently unreli-
able due to their present nonnormalized nature, therefore
greatly hampering effective computing (Attwood 2000).

Here we describe DIAN, an ontology assignment algo-
rithm that assigns concepts to source records or, more gener-
ally, to biological objects within a database, and supports
their querying using concepts rather than keywords. The al-
gorithm supports a variety of ontologies for biological role,
protein function, and protein structure, whereby each ontol-
ogy is implemented on a knowledge base established via com-
puter-assisted human curation of the protein universe. DIAN
has the necessary throughput capacity to annotate entire ge-
nomes, transcriptomes, and proteomes onto any number of
ontologies. The DIAN algorithm, together with the precom-
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puted DIAN annotation database and its associated utilities,
enables users to retrieve, summarize, and predict the higher
order properties of biological objects, therefore increasing
their information content. Overall, DIAN is intended to facili-
tate the navigation of genomic data repositories in a biologi-
cally intuitive, scientifically accurate manner.

RESULTS AND DISCUSSION
Biologists rely heavily on databases and search tools such as
the National Center for Biotechnology’s Entrez system to
search and identify records containing information associated
with biological objects such as protein structures and biologi-
cal sequences (Wheeler et al. 2001). However, when comput-
ing on such information, most query systems suffer from the
limitations inherent to the annotations associated with these
objects. Even in highly curated databases such as the SWISS-
PROT database of protein information (Bairoch 1991), there
remains significant variability in the descriptors present in
these source records. This is because there are many legitimate
ways of describing biological concepts. Furthermore, even
when the data are curated by experts, a variety of factors in-
troduce variability in the quality and comprehensiveness of
these annotations. Thus, when querying annotation data-
bases, conventional search tools encounter fundamental limi-
tations, such that they cannot return records in a reliable
manner unless a complete set of descriptors known to be pres-
ent in the targeted records is provided in the query. This, of
course, rarely is the case.

DIAN is designed to enable the querying of popular bio-
logical databases in such a way that the limitations associated
with the original source records of these databases can be
partially overcome. This is accomplished by having the op-
erator query biological ontologies for records associated with
these ontologies, rather than querying the source records di-
rectly (for details, see supplementary material at http://
www.genome.org). The primary algorithm used by DIAN for
associating records to ontologies relies on a domain-based ap-
proach that does not depend on the presence of annotations
in the source record, thus bypassing the limitations associated
with these annotations. In addition, because of this approach,
DIAN often makes suggestive assignments, whereby proteins
are predicted to belong to ontological nodes in the absence of
definitive information.

For these reasons, when performed using conventional
keyword-based search engines, the queries described in Table
1 will fail to return a fraction of records because of an absence
of matching annotations or because of the indirectness of
these annotations (i.e., hyperlinked records). Three such cases
of records that would otherwise not have been returned with-
out DIAN are illustrated in Table 1. They involve two novel
genes, one with predicted functional information listed in the
source record and one without such information, as well as
one well-characterized gene. In case 1, DIAN identified a gene
with no known functional activity by predicting the cellular
role and protein function of a sequence on the basis of its
pattern of protein domains. UniGene was queried for records
involved in the apoptotic Cellular Role. DIAN returned a rec-
ord from the UniGene database where no functional informa-
tion is available regarding this sequence, such that this record
would not have been identified by keyword-based querying
(Table 1). It is only after consulting the SWISS-PROT record
linked to this UniGene entry that an apoptotic function is
uncovered. Case 2 concerns the prediction of a cellular role

for a hypothetical gene in SWISS-PROT in which putative
functional information is available (zinc finger; DNA binding)
but where the annotation does not specify a cellular role. In
this case, DIAN predicted an involvement in the “RNA syn-
thesis/transcription factor” Cellular Role node. In case 3,
DIAN predicted a novel property for a highly characterized
gene. Here, UniGene was queried for records involved in the
apoptotic Cellular Role. The gene coding for the protein as-
sociated with the Wiskott-Aldrich syndrome (WAS; Derry et
al. 1994) was one of the hits returned by this query. The WAS
protein is thought to be involved in signal transduction, yet
there is no indication of an apoptotic role in any of the rec-
ords associated with this gene, including the associated
SWISS-PROT and OMIM records. However, indications sug-
gestive of a possible apoptotic role were found in these
sources. On subsequent analysis of the scientific literature as-
sociated with WAS and its Drosophila ortholog, several publi-
cations were uncovered that strongly substantiate a recently
discovered apoptotic role for this gene (Rawlings et al. 1999;
Rengan et al. 2000; Ben-Yaacov et al. 2001). Beyond the per-
formance of DIAN in returning records otherwise unretriev-
able, the combination of ontology-based and Boolean opera-
tors (e.g., NOT, AND, OR) enables users to query databases in
a biologically meaningful manner rather than to submit to
unfamiliar querying syntaxes and the vagaries of unstructured
data. For example, using DIAN it is possible to formulate di-
rectly the following questions in a simple manner: Are there
cytokines involved in the apoptosis biological process? Are
there proteins harboring the caspase domain that are in-
volved in apoptosis? What receptors are associated with apop-
tosis? What proteins are both apoptosis-associated and DNA-
associated in terms of cellular role? (i.e., proteins that might
perform an apoptotic role via DNA binding). Such questions
cannot be addressed if the contents of annotation databases
have not been normalized to various biological concepts, and
furthermore, comprehensive biological query cannot be per-
formed reliably when accomplished exclusively by using a
simple keyword-search approach, as seen in most public da-
tabases.

Organization of Biological Data Using Ontologies
An ontology is a specification of a conceptualization that pro-
vides a written, formal description of a set concepts and their
relationships within a domain of interest (Karp 2000). On-
tologies are object-oriented data structures that use object
composition and inheritance as techniques to encapsulate
conceptual relationships.

In biology, there are two kinds of relationships between
conceptual objects to be represented: inheritance and compo-
sitional relationships. Inheritance hierarchies model IS-A re-
lationships among base and derived conceptual objects. This
is because a derived object IS-A type of base object. In con-
trast, composite objects, that is, objects that contain other
objects as members, model HAS-A relationships. This is be-
cause the container object HAS-Another as its member com-
ponent. For example, in the Gene Ontology (GO) ontologies
(Ashburner et al. 2000), the Cellular Component ontology
relies on HAS-A compositional relationships, whereas the Mo-
lecular Function ontology uses IS-A inheritance relationships.
In this way, the granularity and richness of the universe of
biological concepts can be modeled by ontologies.

To encapsulate biological conceptual objects and support
the goal of concept-based searching, the DIAN algorithm seg-
ments the spaces of protein function, biological role, and pro-
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tein structure using a collection of ontologies. Although
HAS-A relationships should be supportable, in this study we
rely exclusively on IS-A ontologies as a paradigm to show the
DIAN methodology. Computationally, ontologies take the
form of a graph, a tree being a special form of a graph. A node
always inherits the properties of all parental nodes, such that
a complete description of the biochemical function of a pro-
tein involves starting the path from the leaf to the root of the
tree. The first three levels of the PROSITE Protein Function
ontology are used to illustrate this conceptualization (Fig. 1).
Starting from the root of the tree (level 0), each level describes
biochemical protein function in increasingly greater detail. In
this illustration, six proteins were assigned to the transferase
node. Because this is a protein function ontology, proteins
can belong to different families and species and yet be as-
signed to the same node. By providing standard classification
data structures, ontologies are ideal in providing a common
platform for annotation and therefore promoting reuse across
different informatics systems and research fields. Because the
focus of this paper is on a methodology for assigning protein
sequences to ontologies, the relative merits of individual on-
tologies are addressed only briefly.

Choice of Ontologies
Because an ontology is essentially a specification of concep-
tualization (Karp 2000), the choice and quality of the chosen
ontologies are essential in ensuring the integrity of encapsu-
lating the biological data. To support the conceptualization of
protein functions, biological roles, and cellular processes, sub-
stantial attention has been devoted, both in academia and
industry alike, to the development of various ontologies to
meet these needs. Examples include the enzyme commission
classification system (Commission on Biochemical Nomen-
clature and International Union of Biochemistry. Standing
Committee on Enzymes 1973; International Union of Bio-
chemistry and Molecular Biology. Nomenclature Committee
and Webb 1992; International Union of Biochemistry. No-

menclature Committee and Commission on Biochemical No-
menclature 1979; International Union of Biochemistry. No-
menclature Committee et al. 1979; International Union of
Biochemistry. Nomenclature Committee et al. 1984; Interna-
tional Union of Biochemistry. Standing Committee on En-
zymes 1965); the Escherichia coli Protein Function ontology
(Riley 1993); the EcoCyc system for E. coli metabolic pathway
(Karp 2000); the PROSITE ontology of domain biological
functions (Hofmann et al. 1999); the GO ontologies (Ash-
burner et al. 2000); the KEGG system for the classification of
genes according to pathway information (Ogata et al. 1999);
RIBOWEB (Chen et al. 1997); and the TIGR expressed gene
anatomy database (EGAD, http://www.tigr.org/tdb/egad/
egad.shtml). Similarly, to facilitate the understanding and ac-
cess to information of protein structures, several protein
structure classifications have been constructed (Murzin et al.
1995; Orengo et al. 1997). Despite these efforts, there is still
no accepted ontology with the necessary robustness, compre-
hensiveness, and level of detail to satisfy the demands of ge-
nome annotation, although this is an implied goal of the GO
project.

Given these limitations, and in the absence of the GO
ontologies, we originally chose to rely on various publicly
available ontologies, in addition to deriving the DoubleTwist
Biological Role Ontology (Table 1). For Protein Function,
DIAN supports the PROSITE Protein Function and the enzyme
commission classification. Given its rigor, comprehensive-
ness, and rapid evolvement, the GO ontologies, including its
three components (molecular function, biological process,
cellular components), are expected to be integrated within
DIAN in the foreseeable future. For the Cellular Role of pro-
teins, the TIGR expressed gene anatomy database (EGAD) on-
tology and DoubleTwist Biological Role ontology are sup-
ported. Although not very comprehensive, the EGAD ontol-
ogy currently is the only publicly available ontology designed
to inventory human expressed genes. The DoubleTwist Bio-
logical Role ontology was derived from Riley’s Protein Func-
tion ontology (Riley 1993) and has been designed for the con-
cise conceptual encapsulation of the biological role of the
human gene to enable comprehensive human genome assign-
ment. As for protein structure classification, the Structure
Classification of Proteins (SCOP) ontology was selected be-
cause SCOP is sequence-based and its classifications provide a
detailed and comprehensive description of the structural and
evolutionary relationships of proteins of known structure
(Murzin et al. 1995).

Architectural Design
DIAN (Fig. 2) integrates several databases through algorithms
that perform the ontological assignment of proteins on the
basis of two distinct principles. The first algorithm (vocabu-
lary-based mapping) relies on the recognition of vocabulary
within a source record from a database of protein annota-
tions. The second algorithm (domain-based mapping) assigns
protein sequences based on the detection of protein domains
and does not rely on preexisting sequence annotation.

DIAN has several subcomponents in support of these
functions: a knowledge base of assignments of SWISS-PROT
proteins to ontologies; two databases that provide operational
definitions for each ontological node, based either on vocabu-
lary or the assignment of protein domains; two assignment
algorithms for assigning proteins on the basis of either vo-
cabulary or the presence of protein domains; and lastly a data

Figure 1 Defining ontologies. Ontologies represent a specification
of a domain of knowledge expressed in the structure of mathematical
graphs (a tree being a special form of a graph). Connecting lines
represent the relationship between the nodes, specifically IS-A rela-
tionships. Known protein functions are assigned to nodes (repre-
sented by circles) within the ontology graph. A child node always
inherits the properties of all parent nodes, such that a complete de-
scription of the biochemical function of a protein involves retracing
the path from the leaf to the root of the tree.
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indexing and retrieval engine to support user queries. Each
subcomponent is described in the following sections.

Development of the DIAN Knowledge Base
An essential component in DIAN is a knowledge base derived
from a computer-aided human curation process that associ-
ates entries of the SWISS-PROT database to ontologies. SWISS-
PROT is known for its high-quality curated annotations of
protein sequences and minimal level of redundancy (Bairoch
and Apweiler 2000). Although most sequence databases pro-
vide SWISS-PROT links to leverage its high-quality annota-
tions, accurate and comprehensive classification of SWISS-
PROT entries onto Protein Function and Cellular Role ontolo-
gies has not been achieved. DIAN relies on this knowledge
base as a foundation to define parameters and data sets to
support the computational assignment of proteins to ontolo-
gies.

During the early phase of the development of this knowl-
edge base, we attempted to rely on preexisting links between
SWISS-PROT and other publicly available databases to deter-
mine whether these links could be used directly to associate
SWISS-PROT records to ontologies. It was found that this su-
perficially straightforward method of assignment is error
prone, and that the resulting coverage of SWISS-PROT was not
comprehensive. Instead, the assignment of SWISS-PROT to
the Protein Function and Cellular Role ontologies stored in
the knowledge base was achieved through a computer-aided
manual curation process (illustrated in Fig. 2). A group of
scientific curators was assembled to manually assign SWISS-
PROT sequences to the DIAN Protein Function and Cellular
Role ontologies by matching the functional annotation of
each SWISS-PROT record to the definition of each node in a
given ontology. To ensure the high accuracy of this underly-
ing data set, we analyzed only the subset of SWISS-PROT pro-
teins that are full length and have been characterized bio-
chemically. This resulted in the initial assignment of over
40,000 proteins to the DIAN ontologies. Subsequent to this

manual curation process, a database of controlled vocabulary
was evolved from the assignment,in which for each ontologi-
cal node, essential keywords were extracted from the annota-
tions of the SWISS-PROT proteins assigned to the node. To
enhance the selectivity and sensitivity of each definition, this
data set was used to partition SWISS-PROT according to re-
cords that are either positively or negatively assigned to a
node. Each set of partitioned SWISS-PROT records was exam-
ined thoroughly by curators to identify false positive records
in the positive pool, and records characterized as false nega-
tives in the negative pool. This information was then used for
a second round of keyword refinement as feedback data in
generating a subsequent, more refined set of controlled vo-
cabulary. This process was repeated until no further addi-
tional identifiable false positives could be detected. Once this
data set stabilized for all nodes, the SWISS-PROT-Ontology
assignment table was finalized, resulting in the assignment of
over 84% of SWISS-PROT (for further details, see on-line
supplementary Table 2B at http://www.genome.org). This in-
formation was added to the knowledge base, such that it now
provides an operational definition that expresses the knowl-
edge associated with each node. The knowledge base was later
used as the foundation for the development of nodal signa-
tures, and along with periodic verifications of the selectivity
and sensitivity on new releases of SWISS-PROT, it ensures the
continued assignment of SWISS-PROT entries to the Protein
Function and Cellular Role ontologies as SWISS-PROT
evolves.

Development of Nodal Signatures
To classify biological sequence annotations by assigning them
to ontologies, we developed annotation signatures for each
node of the supported ontologies. Such nodal signatures pro-
vide the operational definitions used by the DIAN assignment
algorithms to recognize properties in protein sequences, such
that sequences from input databases can be assigned to on-
tologies. Two kinds of nodal signatures are used in the DIAN
algorithm: signatures based on either controlled vocabulary
or protein domain profiles. A protein domain is here defined
as an independent structural unit, which can be found alone,
or in conjunction with other domains. Domains are often the
mediators of the biochemical functions of proteins, although
a substantial fraction of domains appears to play structural
roles only. For this and other reasons, not all domains can be
used as nodal signatures. For the Protein Function and Cellu-
lar Role ontologies, controlled vocabulary databases are used
to efficiently collapse protein annotations present in source
records and to assign these records to ontologies, as was done
when assigning SWISS-PROT sequences to ontologies during
the development of the knowledge base. This controlled vo-
cabulary is expected to accurately classify sequence via anno-
tations preexisting in the source records as long as the quality
of these annotations is comparable to that of SWISS-PROT.
Although sensitive enough to capture input sequence anno-
tations under most circumstances, this approach is essentially
a keyword-matching mechanism that may incorrectly assign
records to ontologies as compared with the actual sequence
annotation. This is an expected consequence of the process by
which nodal vocabularies are derived. For example, it is pos-
sible for both a kinase substrate and a kinase enzyme to be-
come assigned to the same ontology kinase node, when in
fact only kinase enzymes should be assigned to this node. This
is a consequence of the difficulty of defining assignments on
the basis of vocabularies alone.

Figure 2 DIAN overview. (Left) computer-aided human curation
process for the assignment of SWISS-PROT sequences to the Protein
Function and Cellular Role ontologies; (right) application of ontolo-
gies to organize biological annotation databases. Multiple ontologies,
each representing a body of biological knowledge, are stored in the
DIAN database. Individual source records stored in biological se-
quence and structure annotation databases are associated with one or
more ontologies via domain-based and/or vocabulary-based map-
ping, such that they can be queried simultaneously across multiple
ontologies. (GB) GenBank; (GP) GenPept; (SP) SWISS-PROT; (DB) da-
tabase.
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Of larger consequence is the intrinsic quality of the an-
notations associated with a sequence to be assigned, because
annotations in most sequencing projects are transferences ob-
tained through sequence similarity alignments with charac-
terized gene or proteins. This can lead to so-called “multiple-
linkage” errors during the annotation transfer process, which
creates misleading annotations due to the localization of the
alignment in a region with low functional information con-
tent (e.g., a region devoid of a functional domain). Therefore,
an additional assignment algorithm was derived to compen-
sate for this well-known problem by relying only on the pres-
ence of domains within protein sequences or the translation
of DNA sequences into proteins. Whereas evolutionarily and
functionally related protein sequences can diverge signifi-
cantly through evolution, three-dimensional substructures,
such as motifs, domains, and active sites, can remain largely
unchanged (Gusfield 1997). As a result, protein domain pro-
files compiled from multiple sequence alignments can enable
more accurate representation of protein families and super-
families. Furthermore, such conserved sequence features are
highly correlated with structure and function. As a result of
the success of the protein profiling methodology, several pro-
tein domain and motif databases have been built: PFAM (Son-
nhammer et al. 1998), PROSITE (Bairoch 1991), PRODOM
(Corpet et al. 1998), DOMO (Gracy and Argos 1998), EMOTIF/
EMATRIX (Nevill-Manning et al. 1998; Wu et al. 2000),
BLOCKS (Henikoff et al. 1999), PRINTS (Attwood et al. 1997).
Although in the current DIAN algorithm we have chosen to
rely on domains provided by the PFAM database because of its
extensive coverage and the richness of its associated annota-
tions, other domain or motif databases can be integrated in
the same fashion.

Because of the close relationship between a given protein
domain and the function and structure of a protein that har-
bors this domain, the ontological classification of protein se-
quences using well-chosen protein domains can be achieved
by using an effective balance between the specificity and sen-
sitivity of individual domains. A filtering algorithmwas there-
fore developed to select domains qualified to function as
nodal signatures to be used in assigning proteins to ontolo-
gies. Comprehensive analyses of the DIAN knowledge base for
patterns of association between PFAM domains and SWISS-
PROT sequences assigned to ontological nodes revealed fre-
quent many-to-many relationships between domains and
nodes. To promote specificity, it was therefore necessary to
analyze all preliminarily assigned protein domains for the
possibility of conversion to nodal signatures for a particular
node. This was accomplished in the following way: For each
of the protein domains in the source pool, the annotations of
all SWISS-PROT sequences containing a particular protein do-
main were compared against the assignment of this sequence
to a node, as maintained in the DIAN knowledge base. Sec-
ond, if a set of annotations associated with sequences con-
taining a given protein domain was found to be correlated
with the description of the node, this domain was accepted as
the annotation signature for that ontology node, as this do-
main is relatively specifically correlated with that node.

These concepts are illustrated in Figure 3 in the case of
the Protein Function ontology. This ontology is expressed as
a tree in which each node represents a concept and is associ-
ated with other concepts via an “IS-A” relationship. The root
of this tree (level 0) is a generic function. Child nodes inherit
the properties of their parent and express increasingly specific
protein functions. For example, among the children of the

root lies the “enzyme” node, which is defined as “ biomol-
ecules that can catalyze reactions.” Associated with this node
are keywords positively correlated with this function, such as
“Oxidoreductase OR Transferase OR Hydrolase OR Lyase OR
Isomerase OR Ligase”. As a first step in the derivation of the
DIAN knowledge base, proteins described in the SWISS-PROT
database were assigned to the most specific nodes possible.
Here, six proteins were assigned to the transferase node (Fig.
3). Two proteins belong to the same gene family and are of
human origin, whereas all other proteins are from different
gene families from various species. Various protein domains
are present within these proteins, sometimes more than once
in a given protein. Thus, a total of five distinct types of pro-
tein domains are present within the group of proteins as-
signed to the transferase node. However, only three types of
domains are retained by DIAN as protein annotation signa-
tures, because according to the DIAN knowledge base these
domains are the only domains to be specifically associated
with transferase-related functions. Thus, the two remaining
domain types were rejected as annotation signatures because
they are either not encoding a function related to transferases,
or are purely structural domains not directly involved in pro-
tein function. In this way, any database of protein motifs or
domains can in principle be integrated in the DIAN algorithm
to derive ontological node signatures. The current DIAN
implementation relies on protein domains from the PFAM
database as its source of protein domains to be converted into
ontological node signatures.

Based on overlaps between the annotations present in
the 86,593 sequences of release 39 of SWISS-PROT and the

Figure 3 Converting protein domains into ontological nodal signa-
tures. The Protein Function ontology is used here to illustrate the
derivation and assignment of nodal annotation signatures. Proteins
are depicted as rectangles; identical colors indicate membership to
the same protein family in a given species, whereas the various pro-
tein domains are represented as geometrical shapes.
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concepts associated with our ontological nodes, computer-
aided human curation associated 73% of SWISS-PROT se-
quences to the PROSITE Protein Function ontology, 68% to
the EGAD Cellular Role ontology, and 68% to the Dou-
bleTwist Biological Role ontology. Overall, 205,694 keyword-
based patterns and 1699 PFAM domains were compiled to
represent the biological concepts associated with each ontol-
ogy node.

Nodal signatures for the structural ontology were derived
differently from the process described in Figure 3. This was
achieved by profiling the SCOP domain sequences compiled
by the SCOP consortium (Brenner et al. 1998), using selected
protein domains from the PFAM database. Because high se-
quence similarity usually implies significant functional and
structural similarity (Gusfield 1997), 824 PFAM domains were
identified that are referenced in sequences of the SCOP do-
main database (S. Brenner, pers. comm.). These PFAM do-
mains show strong sequence similarity to SCOP domains and
were selected because they are likely to represent a similar
structure in three-dimensional space.

Ontological Assignment Process
Two assignment algorithms are used to assign proteins to
DIAN ontologies. This is achieved on the basis of either the
presence of protein domains or the recognition of vocabular-
ies within the source record. As shown in Figure 2, annota-
tions in various biological sequence databases, including Gen-
Bank, SWISS-PROT, GenPept, PDB, and UniGene, are col-
lapsed through either the domain-based or vocabulary-based
algorithms into a centralized DIAN database. In cases where
DNA sequences are operated on by the domain-based algo-
rithm, a translation algorithm is applied, as DIAN only oper-
ates ultimately on protein sequences. Genomic DNA se-
quences are treated differently in this process because these
sequences show very different properties from cDNA and pro-
teins. In particular, sequence length can easily exceed a mil-
lion characters. For this reason, it would therefore be incorrect
to apply ontologies directly at the level of an entire genomic
sequence. Thus, location coordinates are essential to segment
genomic sequences into biologically meaningful ranges
(“units”) before further processing. If available in the source
record, information specifying the presence of genes, derived
ab initio or experimentally, are used to define the unit. How-
ever, in sequences derived from high-throughput sequencing
projects (e.g., sequences from the GenBank HTG division),
this information is frequently unavailable. In such cases,
DIAN can use available gene predictions from algorithms such
as GENSCAN(Burge and Karlin 1997) or GENEWISE(Birney and
Durbin 2000) to locate the genes in the genomic sequence.

As mentioned earlier, another assignment approach ap-
plied by DIAN is based on the scanning of annotations asso-
ciated with the input biological sequence using a vocabulary-
based mapping process. This is accomplished by the applica-
tion of a collection of keywords that serve as the ontology
node annotation signatures, enabling the collapse of preex-
isting annotations and their assignment to ontological nodes.
The input sequence annotations can be derived from se-
quence similarity information, domain profiling information,
human curation, computation-derived annotations, third-
party annotations, and so forth. Together, the domain-based
and vocabulary-based algorithms are used by DIAN to anno-
tate and classify sequences from input biological databases in
a high-throughput manner.

DIAN Algorithm Evaluation

The sensitivity and selectivity of the DIAN algorithm were
evaluated. Based on sequence similarity results, the vocabu-
lary-based algorithm implicitly transfers existing annotations
and assigns proteins to ontological nodes. However, this pro-
cess suffers from two intrinsic types of errors: Because of the
variability of vocabularies in the annotations, it is very diffi-
cult to identify and compensate for incorrect annotations
during this annotation transfer process. Furthermore, mul-
tiple linkage errors are generated when annotations are
wrongly transferred when the sequence similarity between
both sequences is only present within core structural regions
with low information content, rather than encompassing
functional domains. However, the domain-based assignment
algorithm is not susceptible to these problems. Thus, despite
the observation that the domain-based algorithm generated
less coverage than the vocabulary-based algorithm, the do-
main-based algorithm can make annotation assignments in
the absence of preexisting annotations in the source records.

The accuracy of an ontological mapping algorithm such
as DIAN is defined as the fraction of correct assignments made
to the nodes of an ontology, both in terms of type I variations
(assignments that should not have beenmade but are present)
and type II variations (assignments that are missing and that
should have been made). Here we use the terms types I and II
“variation”, rather than “type I error” and “type II error”, to
emphasize that providing exact error rates in this context is
fundamentally impossible (see the following discussion of er-
ror measurements in this context). The accuracy of the DIAN
algorithm was evaluated using three complementary ap-
proaches, summarized in Table 2. The construction of the
underlying data sets is described in Figure 4. Detailed results
of evaluations are documented in Table 3.

The DIAN assignments of well-characterized mouse
sequences were compared with assignments made via an
independent assignment process (method 2, Table 2). These
assignments were provided by the Mouse Genome Data-
base (MGD; Blake et al. 2000) using the Molecular Function
and Biological Process ontologies from the Gene Ontology
(GO) Consortium (Ashburner et al. 2000; http://www.
geneontology.org). The application of GO ontologies to the
mouse genome was chosen over that of other organisms such
as Drosophila and others because of its closer relationship to
human proteins and the bias in the SWISS-PROT database
toward higher organisms. Because these ontologies are differ-
ent from those currently supported by DIAN, a cross-
referencing was first determined to enable comparisons of as-
signments. As shown in Figure 4B, comparing assignments
made to ontologies is accomplished first by manually select-
ing nodes from a reference ontology for concepts that are
shared between the ontologies. Because of the different levels
of resolution supported by different ontologies, nodes at
equivalent levels of resolution need to be identified. This re-
sults in some of the terminal nodes of one ontology being
associated with middle nodes of the counterpart ontology.
Furthermore, multiple nodes from one ontology may need to
be selected to represent the concepts associated with a single
node from the counterpart ontology (indicated by purple
nodes from the reference ontology, all of which are concep-
tually equivalent to a single node from the DIAN ontology).
Thus, the node associated with the INHIBITORS concept on
level 3 of the DIAN ontology is conceptually equivalent to the
APOPTOSIS INHIBITORS and ENZYME INHIBITORS nodes
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and subnodes on levels 6 and 8 and lower of the reference
ontology. Other problems arise from the differing extent of
coverage between ontologies, which can obscure the interpre-
tation of the comparison. In this example, there are several
more proteins mapped to the DIAN ontology than to corre-
sponding nodes of the reference ontology. Some proteins are
mapped to both ontologies (green area, where individual pair
members are indicated by double arrows), whereas other pro-
teins are mapped only to a single ontology (red area). Within

the latter, a manual review will find that some proteins are
correctly mapped (blue rectangles), whereas others are incor-
rectly mapped (yellow rectangles). Lastly, there can be varia-
tions in the comprehensiveness of assignments made to indi-
vidual proteins, such that only a fraction of the properties
associated with a single protein are assigned to an ontology
(data not shown). Detailed results of this evaluation are listed
in Table 3A and 3B.

A number of intrinsic problems were identified from our

Figure 4 Validation approaches. (A) Evaluating the effectiveness of DIAN by comparing assignments made to a reference ontology. Selected
nodes from Gene Ontology (GO) ontologies were manually associated with nodes in the DIAN ontologies. Sequences assigned to these GO nodes
by the MGI were processed by the DIAN pipeline to compare the assignments made by DIAN with those made by MGI. (B) Associating nodes and
sequences from a reference ontology to a DIAN ontology for comparative evaluation. To estimate the error rates associated with the DIAN
assignment algorithms, we compared mouse sequences mapped via DIAN (A) with assignments made to GO ontologies by MGI.

Table 2. Methodologies Involved in the Evaluation of DIAN: Strengths and Weaknesses

Approach
number

Approach
type Description Strengths Weaknesses

1 Manual verification of
assignments made
to selected proteins.

In-depth review by domain
experts of assignments
made to well-
understood proteins.

Extensive human expertise
can confirm assignments
made by method and
substantiate its
effectiveness.

Suffers from lack of
comprehensiveness; biased in favor
of well-understood proteins.

2 Comparisons with
other assignment
data sets using a
test set of
sequences.

Evaluation of sequence
assignments made to
cross-referenced
ontologies using different
methods.

Presence of extensive shared
assignments for numerous
proteins lends credence
to the method under
evaluation.

Assumes that the reference ontology
can be treated as a standard of
comparison; in practice, this is not
the case. Results in the identification
of weaknesses in both the test and
reference ontology. Manual review is
required to evaluate unbalanced
assignments.

3 Comparisons between
orthologs.

Verification that
assignments made to
closely related orthologs
are balanced, (i.e., nearly
identical).

Strong expectation that
balanced assignments will
be made.

Although orthologs share functions,
even orthologs share functions, even
orthologs from closely related
species don’t necessarily have
identical functions, resulting in
unbalanced assignments; manual
review is required to evaluate
unbalanced assignments.
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Table 3. Comparison between DIAN and MGI Ontological Assignments

Results from the comparative approach are shown. A number of intrinsic problems were identified from this approach, such that type I and type
II variances described here are for comparative purposes only and cannot be interpreted strictly as type I and II errors.

Table 3A. Comparing Assignments Made to the Cellular Role Ontology

Concept
DIAN node
number

Highest level
matching GO modes

Present in Variation

Sensitivity Selectivity
DIAN
and GO

DIAN
only

GO
only Type I Type II

Chromosome structure 1.1 GO:0007001;GO:0006323 7 4 4 0.267 0.267 0.636 0.636
Transcription factors 1.4 GO:0003700 59 54 38 0.358 0.252 0.608 0.522
DNA duplication 3.2 GO:0006260;GO:0003964 10 2 2 0.143 0.143 0.833 0.833
Cell-cell adhesion 5.2 GO:0007155 35 15 14 0.234 0.219 0.714 0.700
Transcription factors 9.1.1.1 GO:0008135 1 0 1 0.000 0.500 0.500 1.000
Microtubule 6.2 GO:0007017 9 0 2 0.000 0.182 0.818 1.000
DNA repair 8.1 GO:0006281 14 2 9 0.080 0.360 0.609 0.875
Programmed cell death 8.2 GO:0006915 14 7 23 0.159 0.523 0.378 0.667
Channel and transporter 4.6 GO:0006810;GO:0005216 47 8 27 0.098 0.329 0.635 0.855
Amino acid metabolism 9.2 GO:0006519 4 1 7 0.083 0.407 0.476 0.625
Stress response 8.4 GO:0006950 5 6 55 0.091 0.833 0.083 0.455
Nucleotide metabolism 9.4 GO:0006140:0006205 0 2 7 0.222 0.778 0.000 0.000

GO:0006143
Cofactor metabolism 9.5 GO:0006731 4 0 3 0.000 0.429 0.571 1.000
Total DIAN and GO: 229
Total DIAN only: 113
Total GO only: 214
Total: 556
Average type I: 0.203
Average type II: 0.385
Sensitivity: 0.517
Selectivity: 0.670

DIAN assignments made to a group of well-characterized, nonredundant mouse sequences were compared to assignments made by the MGI
to the GO Process and Function ontologies. GO modes corresponding to DIAN nodes are listed, along with the abbreviated essential concept
from the DIAN Role ontology. For brevity, only the highest level GO nodes are listed. The number of sequences whose assignment is shared
to both sets of ontologies is indicated (DIAN and GO), as well as the number of sequence assignments which differed (DIAN only, GO only).
These numbers are used to calculate Type I and II variation using the following equations: Type I variation = DIAN only/(DIAN and GO + DIAN
only + GO only); Type II variation = GO only/(DIAN and GO + DIAN only + GO only); Sensitivity = DIAN and GO/(DIAN and GO + GO only);
Selectivity = DIAN and GO/(DIAN and GO + DIAN only). Sensitivity is defined as the ability of the DIAN algorithm to make what are believed
to be all possible correct assignments. Selectivity is defined as the ability of the DIAN algorithm to not make what is believed to be an incorrect
assignment.

Table 3B. Comparing Assignments Made to the Protein Function Ontology

Concept

DIAN
node
number

Highest level
matching GO modes

Present in Variation

Sensitivity Selectivity
DIAN
and GO

DIAN
only

GO
only Type I Type II

Hormones and active
peptides 10 GO:0005179;GO:0005103 7 3 8 0.167 0.444 0.467 0.700

GO:0005104;GO:0005105
GO:0005106;GO:0005109
GO:0005110;GO:0005111
GO:0005112;GO:0005113
GO:0005114;GO:0005115
GO:0005116;GO:0005117
GO:0005118;GO:0005119
GO:0005120;GO:0005121
GO:0005122;GO:0005123
GO:0005124;GO:0005177
GO:0005178;GO:0005186

Inhibitors 12 GO:0004857;GO:0008189 12 3 9 0.125 0.375 0.571 0.800
GO:0005074;GO:0005092
GO:0008200;GO:0005517

DNA or RNA associated
proteins 3 GO:0003676;GO:0003735 255 21 26 0.070 0.086 0.907 0.924

GO:0004748;GO:0003910
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investigation of the different evaluation methodologies de-
scribed here. These are summarized in Table 2. For example,
50% of the Drosophila genes were classified against the GO
Molecular and Biological Function ontologies by the Dro-
sophila community, yet no analysis of the errors associated
with this work was presented (Ashburner et al. 2000). This is
due to the inherent difficulty of assessing error rates associ-
ated with ontological classification, such that none of these
genome annotations and their associated evidence codes can
be statistically evaluated with confidence levels. Here we pro-
vide the first attempt to analyze the error rates associated with
ontological classification.

Because of the lack of a collection of comprehensive,
robust assignments that can be used as a standard of compari-
son, it is inherently impossible to achieve a completely robust
assessment of any assignment methodology. Consequently,

none of the approaches described here were entirely satisfac-
tory because of these fundamental limitations. Problems
range from multiple types of biases in testing sets, to the par-
tiality of the field’s understanding of the function of the pro-
teins in the test sets. Therefore, in many cases the DIAN algo-
rithms were found to be making plausible assignments that
cannot be verified with the present data. Additional problems
include variability in the comprehensiveness of assignments
made to a given protein, as well as variability in the compre-
hensiveness of assignments of various proteins to ontologies,
that is, differences in the coverage between assignment data
sets produced by different methods. For example, in the ex-
periment depicted in Table 4, 40% of assignments generated
by DIAN (representing 216 assignments) were originally found
to be absent in MGD. These were initially considered to be
erroneously introduced by the DIAN algorithm, and were

Table 3B. (Continued)

Concept

DIAN
node
number

Highest level
matching GO modes

Present in Variation

Sensitivity Selectivity
DIAN
and GO

DIAN
only

GO
only Type I Type II

GO:0003911;GO:0004518
GO:0003899;GO:0008534
GO:0008263;GO:0003907
GO:0003905;GO:0003906
GO:0003904
GO:0004844;GO:0003908

Protein secretion and
chaperones

13 GO:0003754;GO:0008565 11 3 2 0.188 0.125 0.846 0.786

GO:0006605
Electron transport
proteins

5 GO:0005489 0 7 6 0.538 0.462 0.000 0.000

Other tranport proteins 6 GO:0005215 62 17 19 0.173 0.194 0.765 0.785
Structural proteins 7 GO:0005198 31 23 40 0.245 0.426 0.437 0.574
Receptors 8 GO:0004872 67 43 15 0.344 0.120 0.817 0.609
Cytokines and growth
factors

9 GO:0008083;GO:0005125 35 19 10 0.297 0.156 0.778 0.648

GO:0008009
Total DIAN and GO: 480
Total DIAN only: 139
Total GO only: 135
Total: 754
Average type I: 0.184
Average type II: 0.179
Sensitivity: 0.780
Selectivity: 0.775

A group of well-characterized, nonredundant mouse sequences were assigned to the Protein Function ontology by the DIAN domain-based
mapping algorithm. These assignments were compared to assignments made to the GO Process and Function ontology by the MGI.

Table 4. Requirement for Manual Validation of Comparative Results

Concept
DIAN/Role
node number

Present in
DIAN and GO

DIAN
only

GO
only

Reported type I
variation

Effective number of
type I assignments

Effective rate of
type I variation

Cytoskeletal 3.1 30 19 16 0.29 4 0.06
Nucleotide 6.5 6 25 11 0.60 3 0.05
Sugar/glycolysis 6.7 0 35 8 0.81 3 0.07
RNA polymerases 5.1.1 0 4 0 1.00 4 0.00
RNA processing 5.1.2 4 9 10 0.39 1 0.04
Transcription factors 5.1.3 142 124 98 0.34 0 0.00**

Type I variation here refers to those assignments made by DIAN but not in the reference ontology implementation system (GO system). Manual
validation results show that Type I variation (DIAN-only assignments) cannot simple be treated as Type I error in a strict statistical sense.
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therefore classified as type I variations. However, on manual
review, most of these assignments were found to be correct,
such that the number of true type I variations was ultimately
reduced to 2.5%. Thus the Type I and II variations in our
evaluation scheme cannot be interpreted simply as Type I or
II errors in a strict statistical sense. The missing assignments
presumably reflect limitations in the keyword-recognition al-
gorithm used in most of the assignments currently provided
by the Mouse Genome Database (outlined in Fig. 5A). As an
illustration, MGD assignments for entry #104661, which
codes for RAR-related orphan receptor �, are depicted in Fig-
ure 5B. This gene, a member of the nuclear hormone receptor
superfamily involved in thyroid hormone signaling pathway,
was assigned to GO categories by MGD on the basis of elec-
tronic annotation using a keyword-scanning algorithm (GO
evidence code IEA). This algorithm correctly identified the
protein function as “DNA binding” and the role of the gene as
“transcriptional regulation”, but failed to also indicate its re-
ceptor function, which is involved in cell signaling (Fig. 5B).

Despite the fact that a more systematic evaluation of as-
signment algorithms is not feasible because of these deficien-

cies, results from the evaluation approaches applied here in-
dicate that DIAN returns generally correct assignments of pro-
teins to its various ontologies. Deficiencies in DIAN’s
assignment algorithms were most manifest in its favoring of
underprediction (type II variation). Our manual curation and
validation indicate that this error type is far more common
than overprediction. This reflects the conservativeness of the
selection of protein domains as bona fide annotation signa-
tures for a given node, as well as the limited coverage of the
protein universe by domains presently available in the PFAM
database, on which the current version of the algorithm is
based. In contrast, overprediction is much less frequent and
relates to domains that are not completely specific to a given
concept and thus return spurious assignments. Other prob-
lems include limitations in the resolution of the algorithm,
such that DIAN may be unable to correctly assign sequences to
very specific nodes such as leafs in the Enzyme hierarchy.

DISCUSSION

Considerations Related to the Assignment of Protein
Domains to Biological Ontologies
Because protein domains often involve many-to-many rela-
tionships with respect to biochemical function, that is, a
given domain may be associated with multiple biochemical
functions, the importance of curating these associations to
ensure specificity is essential to reduce incorrect assignments.
This is most manifest in cases where a simple linkage is made
between a protein domain to a biological ontology, such as in
the PRINTS and PROSITE databases. Therefore, it is necessary
to review the specificity of an assignment in the context of all
other assignments this domain may have to other nodes. Fur-
thermore, an evaluation of a nodal annotation signature with
respect to the protein universe, here currently approximated
by the SWISS-PROT database, is required to be statistically
rigorous. For such a review to be robust, it becomes necessary
to first associate all known domains to all protein functions
described by an ontology, followed by estimating the signifi-
cance of these associations to ensure that they are informative
and not due to, for example, a requirement for a structural
role unconnected to the protein function under consider-
ation. This is because only a fraction of domains are truly
diagnostic for a given protein function, and although careful
manual review can help strengthen the quality of these asso-
ciations, we believe that only when a global view of associa-
tions is available can domains with a low specificity to differ-
ent functions be eliminated and meaningful assignments be
made. Because of the magnitude of the work, generating such
a global view can only be achieved via a combination of au-
tomation followed by manual curation.

In the case of DIAN, this was accomplished by deriving
manually a knowledge base composed of the assignments of
all SWISS-PROT proteins to the various ontologies used by
DIAN. This was to serve as the first step in defining domains
that are meaningfully associated with protein function. This
knowledge base was then used to perform exhaustive verifi-
cations of the significance of these associations by deriving a
heuristic decision rule by which to accept or reject the asso-
ciation of individual domains to ontological nodes. For each
candidate protein domain for the annotation signature of the
ontology node, the annotations of all SWISS-PROT sequences
containing this particular protein domain were analyzed
against the SWISS-PROT sequences previously associated with

Figure 5 Comparison of assignment methods. (A) Comparison of
automated and manual assignment methods. The properties of au-
tomated assignment methods such as DIAN are compared with those
of manually generated assignments. (B) Comparison of DIAN and
MGI assignments. Results from a simple keyword-based method are
illustrated here in assignments made by the algorithm used by Mouse
Genome Informatics Database, as compared with DIAN assignments.
Note that the “DNA binding” cellular role is vague, as the correct
function for this gene should be “transcription factor.”
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this node by the DIAN knowledge base. The significant over-
lap between these pools of SWISS-PROT records and PFAM
domains ensures that a particular protein domain can be used
as a nodal signature. This information is enabled in a heuristic
rule that further requires that a majority of at least four of five
SWISS-PROT proteins used in the knowledge base be nonfrag-
mentary, and that annotations associated with these se-
quences be derived from published laboratory results.

Evaluation of Keyword-Based Versus Domain-Based
Ontology Nodal Assignment Methods
As described earlier, DIAN combines two algorithms for the
automated assignment of proteins to ontologies that rely on
an underlying knowledge base assembled using manual cura-
tion, along with heuristic rules. By comparison, other assign-
ment efforts, such as those made by MGD in the context of
the GO consortium, currently rely primarily on a simple pro-
cess of scanning source records for keywords to GO terms. Full
manual assignment of records is intended to follow this initial
phase. However, such human curation poses several signifi-
cant limitations, among which is the prohibitive expense of
genome-scale assignment. For this reason, over 84% of the
14,801 assignments presently available in MGD were gener-
ated by using keyword-based association, with the remaining
assignments being produced manually. Because automated
assignments methods can be expected to remain a key tech-
nology due to their high-throughput capability, development
of algorithms that go beyond the limitations of simple key-
word-based assignment is imperative, as most genes will not
receive the kind of textual descriptions that lend themselves
to this approach. Therefore, the domain-based approach of
DIAN provides a distinct additional approach beyond key-
word scanning, and permits high-throughput assignment in-
dependently of the presence of prior textual annotations,
while retaining reasonable accuracy. Lastly, because of the
frequent difficulty of confirming whether a given assignment
is incorrect, such reviews should perhaps be limited to pro-
viding a general confidence value on the mappings made by
automated methods. As was done here, selective manual re-
views of individual assignments based on the comparison of
different algorithmic implementations can also be used to
uncover possible errors and defects in their respective map-
ping methodologies. Worthy of mention here is DIAN’s vali-
dation module, which integrates manual reviews to compen-
sate for deficiencies in the various automated validation
methods.

In summary, DIAN is a high-throughput annotation al-
gorithm that uses biological ontologies to segment the spaces
of protein function, biological role, and structure. When ap-
plied to data generated from genome sequencing projects,
DIAN is an effective algorithm for the conceptual annotation
of genome-scale in a timely and scientifically accurate man-
ner. It is also an effective data mining algorithm, applicable to
the identification of novel correlations that can only be made
at the conceptual level.

METHODS

Ontologies
DIAN currently supports five ontologies: the PROSITE ontol-
ogy was used for Protein Function (http://www.expasy.ch/
prosite/, release/version 16.30); Cellular Role is enabled by
the EGAD ontology from TIGR (http://www.tigr.org/docs/
tigr-scripts/egad_scripts/role_report.spl, release/version N/A),

which was originally derived from Monica Riley’s E. coli pro-
tein ontology; the Enzyme classification is from IUBMB (In-
ternational Union of Biochemistry and Molecular Biology
(http://www.chem.qmw.ac.uk/iubmb/enzyme/, release/
version Enzyme Nomenclature 1992 and all of its supple-
ments); SCOP is from the Medical Research Council (MRC) of
the United Kingdom (http://scop.mrc-lmb.cam.ac.uk/scop/
index.html, release/version 1.53); the DoubleTwist Biological
Role was derived internally (release/version 1.00). These on-
tologies can be viewed as taxonomies of IS-A links, in which a
node situated at level 1 (Fig. 1) indicates a node expressing a
more general concept than that of a node at level 2, whereas
a node situated at level 3 indicates a more specialized node
than the one at level 2.

Component Databases Supported by DIAN
The component databases supported by DIAN are the Gen-
Bank primate division (GB Release 121); UniGene (Build
#129); SWISS-PROT (Release 39); PDB (Release as of 1/1/2001);
and GenPept (Release as of 12/27/2000).

Construction of the DIAN Knowledge Base
Two databases were constructed as the foundation of the
knowledge base associated with ontological nodes: a con-
trolled vocabulary and regular expression database, and a pro-
tein domain signature database. For classification of protein
structures, the PFAM motifs within the SCOP domain se-
quences compiled by the SCOP consortium (Brenner et al.
1998) were used as source material for the nodal signatures of
the structural ontology. The controlled vocabulary database
was populated during the construction of the SWISS-PROT-
Ontology mapping table. A computer-aided human curation
process was performed by a group of domain specialists
whereby SWISS-PROT sequences were manually assigned to
the supported ontologies. Node-specific vocabulary and regu-
lar expressions were derived and later used to control the as-
sociation of source-record annotations to a given node of the
supported ontologies. In this way, vocabulary data sets for
each relevant node were created and manually curated with
subsequent releases of SWISS-PROT. Using the manually cu-
rated association between SWISS-PROT sequences and onto-
logical nodes, sequences in this database were processed to
identify PFAM protein domains using Paracel’s Gene-
Matcher system. Through the SWISS-PROT-Ontology table,
annotations made with respect to PFAM domains in SWISS-
PROT source records were used to verify the accuracy of the
association of PFAM domains to an ontology node before as-
signing a domain to a node. Specifically, because PFAM do-
main and ontology node each have a satellite pool of SWISS-
PROT records, the extent of the overlap between these pools
of records is used to confirm the correctness of the assignment
of this PFAM domain to a particular ontology node. This was
done in a many-to-many manner, such that a domain can be
assigned to more than one node, and a given node can have
more than one domain associated with it.

DIAN Algorithm Implementation
The underlying DIAN knowledge base was implemented us-
ing the Oracle 7.3 relational database management system
(Oracle). For Hidden Markov Model searching, the Gene-
Matcher system was selected for its ability to perform high-
throughput protein domain profiling using the PFAM data-
base. User queries of the DIAN data set are performed using the
PLS index-based search engine (http://www.pls.com) from
American Online. Most of the DIAN pipeline was imple-
mented using the Perl (v.5.0) language. Benchmarks of chro-
mosome 22 were obtained as follows: chromosome 22 was
first fragmented into overlapping fragments of 200,000 bp.
GENSCAN(Burge and Karlin 1997) was used to generate a da-
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tabase of predicted gene sequences. This collection of gene
predictions was then processed by the DIAN pipeline for an-
notation analysis. In this case, rather than using Gene-
Matcher , PFAM domain profiling was done by farming the
predicted gene translations to four workstations running the
HMMER software package to show that DIAN can be applied
easily as a component of a large-scale annotation system for
genome-scale sequencing projects using a conventional com-
puting architecture. The coverage by DIAN of chromosome 22
was thus based on this database of predicted gene sequences.
Only the domain-based assignment algorithm was used in
this case.

DIAN Algorithm Evaluation
Three approaches were applied in evaluating the assignment
accuracy of DIAN: manual verification, comparisons between
assignments to different ontologies, and ortholog-based vali-
dation. In the first approach, manual verification of assign-
ments was made to selected proteins. A group of domain ex-
perts was given the task of reviewing annotation assignments
of biological sequences made by the DIAN pipeline within
their domain of expertise. Several dozen proteins of varied
types were evaluated in this manner. In the second approach,
a test set was constructed for the comparative evaluation of
assignments. Nodes from the GO:Process or GO:Function on-
tologies that are conceptually equivalent to nodes of the DIAN
Protein Function or Cellular Role ontologies were identified
(Table 3, Fig. 4A,B; see Fig. 4 for explanation). Mouse genes
assigned by MGD (http://www.informatics.jax.org/; Baker et
al. 1999) to these GO nodes (or their child nodes) were then
retrieved. The protein sequences for these genes were ob-
tained from RefSeq via shared HUGO gene names (http://
www.gene.ucl.ac.uk/nomenclature/). An all-versus-all Smith-
Waterman sequence similarity search (Smith and Waterman
1981) was further performed to eliminate sequence redun-
dancy within these mouse sequences. Only sequences with
&lt:40% overall similarity were retained as the testing set,
composed of 857 proteins. These sequences were then as-
signed to DIAN ontologies by the DIAN algorithm for com-
parison against their original assignments in GO ontologies
(Table 3A, 3B). Sequences with unbalanced assignments be-
tween GO and DIAN ontologies were examined manually to
assess the source of the imbalance: the presence of a missing
assignment of a bona fide property listed in GO, or a missing
or incorrect assignment of a bona fide property in DIAN. In
the last approach, assignments made to orthologous se-
quences were compared. A test set of orthologous proteins
was assembled, composed of a random set of 37 pairs of or-
thologous Refseq protein records for mouse and human. Or-
thology was assumed when genes shared the same HUGO
gene name. Sequences from the test set were processed by the
DIAN pipeline, and resulting assignments were compared be-
tween proteins, with the expectation that identical assign-
ments would be generated. Sequences with unbalanced as-
signments were examinedmanually to assess the source of the
imbalance, such as the presence of a species-specific function
or from a possibly erroneous assignment made by the DIAN
algorithm.
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